Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
EMBO Mol Med ; 15(11): e17694, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37635627

RESUMO

Therapies reconstituting autologous antiviral immunocompetence may represent an important prophylaxis and treatment for immunosuppressed individuals. Following hematopoietic cell transplantation (HCT), patients are susceptible to Herpesviridae including cytomegalovirus (CMV). We show in a murine model of HCT that macrophage colony-stimulating factor (M-CSF) promoted rapid antiviral activity and protection from viremia caused by murine CMV. M-CSF given at transplantation stimulated sequential myeloid and natural killer (NK) cell differentiation culminating in increased NK cell numbers, production of granzyme B and interferon-γ. This depended upon M-CSF-induced myelopoiesis leading to IL15Rα-mediated presentation of IL-15 on monocytes, augmented by type I interferons from plasmacytoid dendritic cells. Demonstrating relevance to human HCT, M-CSF induced myelomonocytic IL15Rα expression and numbers of functional NK cells in G-CSF-mobilized hematopoietic stem and progenitor cells. Together, M-CSF-induced myelopoiesis triggered an integrated differentiation of myeloid and NK cells to protect HCT recipients from CMV. Thus, our results identify a rationale for the therapeutic use of M-CSF to rapidly reconstitute antiviral activity in immunocompromised individuals, which may provide a general paradigm to boost innate antiviral immunocompetence using host-directed therapies.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Animais , Citomegalovirus , Fator Estimulador de Colônias de Macrófagos , Transplante de Células-Tronco Hematopoéticas/métodos , Infecções por Citomegalovirus/prevenção & controle , Hematopoese , Antivirais/farmacologia , Antivirais/uso terapêutico , Diferenciação Celular
3.
Front Immunol ; 12: 683597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335584

RESUMO

Lymphomas are cancers deriving from lymphocytes, arising preferentially in secondary lymphoid organs, and represent the 6th cancer worldwide and the most frequent blood cancer. The majority of B cell Non-Hodgkin lymphomas (B-NHL) develop from germinal center (GC) experienced mature B cells. GCs are transient structures that form in lymphoid organs in response to antigen exposure of naive B cells, and where B cell receptor (BCR) affinity maturation occurs to promote B cell differentiation into memory B and plasma cells producing high-affinity antibodies. Genomic instability associated with the somatic hypermutation (SHM) and class-switch recombination (CSR) processes during GC transit enhance susceptibility to malignant transformation. Most B cell differentiation steps in the GC are at the origin of frequent B cell malignant entities, namely Follicular Lymphoma (FL) and GCB diffuse large B cell lymphomas (GCB-DLBCL). Over the past decade, large sequencing efforts have provided a great boost in the identification of candidate oncogenes and tumor suppressors involved in FL and DLBCL oncogenesis. Mouse models have been instrumental to accurately mimic in vivo lymphoma-specific mutations and interrogate their normal function in the GC context and their oncogenic function leading to lymphoma onset. The limited access of biopsies during the initiating steps of the disease, the cellular and (epi)genetic heterogeneity of individual tumors across and within patients linked to perturbed dynamics of GC ecosystems make the development of genetically engineered mouse models crucial to decipher lymphomagenesis and disease progression and eventually to test the effects of novel targeted therapies. In this review, we provide an overview of some of the important genetically engineered mouse models that have been developed to recapitulate lymphoma-associated (epi)genetic alterations of two frequent GC-derived lymphoma entities: FL and GCB-DLCBL and describe how those mouse models have improved our knowledge of the molecular processes supporting GC B cell transformation.


Assuntos
Modelos Animais de Doenças , Suscetibilidade a Doenças , Linfoma de Células B/etiologia , Camundongos Transgênicos , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Biomarcadores Tumorais , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Camundongos , Monitorização Imunológica , Translocação Genética
4.
Bio Protoc ; 9(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30931348

RESUMO

Testicular macrophages (tMΦ) are the most abundant immune cells residing in the testis, an immune-privileged organ. TMΦ are known to exhibit different functions, such as protecting spermatozoa from auto-immune attack by producing immunosuppressive cytokines and trophic roles in supporting spermatogenesis and male sex hormone production. They also contribute to fetal testicular development. Recently, we characterized two distinct tMΦ populations based on their morphology, localization, cell surface markers, and gene expression profiling. Here, we focus and describe in detail the phenotypical distinction of these two tMΦ populations by fluorescence-activated cell sorting (FACS) using multicolor panel antibodies combining with high-resolution immunofluorescence (IF) imaging. These two techniques enable to classify two tMΦ populations: interstitial tMΦ and peritubular tMΦ.

5.
Cell Immunol ; 330: 120-125, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29650243

RESUMO

Macrophages are innate immune cells present in essentially every organ of the body with dedicated tissue specific functions. We will present in this review the unique properties and functions of macrophage populations residing in the testis, an immune-privileged organ. Testicular macrophages (tMΦ) could be seen as guardians of fertility due to their immunosuppressive functions protecting spermatogenesis from auto immune-attack. They exhibit testis specific functions with essential roles in normal testis homeostasis and fetal testicular development. Recently, two distinct testicular macrophage populations have been characterized based on different localization, morphology, gene expression profiles, developmental origin and postnatal development. We will discuss the importance of these two testicular macrophage populations for organ specific functions such as testosterone production and spermatogenesis, as well as their role in establishing immuno-privilege highlighting the contributions of macrophages to male fertility.


Assuntos
Fertilidade/imunologia , Macrófagos/imunologia , Testículo/imunologia , Testosterona/imunologia , Animais , Humanos , Imunidade/imunologia , Macrófagos/metabolismo , Masculino , Modelos Imunológicos , Espermatogênese/imunologia , Testículo/citologia , Testículo/metabolismo , Testosterona/metabolismo
6.
J Exp Med ; 214(10): 2829-2841, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28784628

RESUMO

Testicular macrophages (tMφ) are the principal immune cells of the mammalian testis. Beyond classical immune functions, they have been shown to be important for organogenesis, spermatogenesis, and male hormone production. In the adult testis, two different macrophage populations have been identified based on their distinct tissue localization and morphology, but their developmental origin and mode of homeostatic maintenance are unknown. In this study, we use genetic lineage-tracing models and adoptive transfer protocols to address this question. We show that embryonic progenitors give rise to the interstitial macrophage population, whereas peritubular macrophages are exclusively seeded postnatally in the prepuberty period from bone marrow (BM)-derived progenitors. As the proliferative capacity of interstitial macrophages declines, BM progenitors also contribute to this population. Once established, both the peritubular and interstitial macrophage populations exhibit a long life span and a low turnover in the steady state. Our observations identify distinct developmental pathways for two different tMφ populations that have important implications for the further dissection of their distinct roles in organ homeostasis and testicular function.


Assuntos
Macrófagos/fisiologia , Testículo/citologia , Animais , Proliferação de Células/fisiologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Imunidade Celular/fisiologia , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Espermatogênese/fisiologia , Células-Tronco/fisiologia , Testículo/imunologia , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...